“\p

How to Deploy A Smart Contract Using Python Web3 Tools: A Full Coverage

No comments

ARASHTAD :
e HOW TO DEPLOY A SMART CONTRACT
- USING PYTHON WEB3 TOOLS

A FULL COVERAGE ‘ @ e
ARASHTAD.COM = : :

In thistutorial, we are going to see how we can interact with smart contracts using
Solidity outside of the Remix IDE. To do this, we should somehow do the process of
executing transactions and deploying the contracts with a programming language and
a module. Web3 modules provide means for serving our purpose through JavaScript or
python. We are going to deploy a smart contract using Python web3 tools and use VS
code asour IDE.

Essentialsfor Using Python Web3 Tools

This series of tutarials is the cantinuation of the Solidity tutorials in Remix IDE. However, we use VS Code or sublime

text instead of Remix IDE. So, it is highly recommended that you read those articles before you begin this series of

tutorials. It is also useful if you read the getting started with DAPPs tutorials as well to be mare familiar with how to

install Web3 Python on your operating system and some web3.py hands-on sample codes. So, let’s get started with
more exciting steps into developing a decentralized web application.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

https://blog.arashtad.com/blockchain/deploy-smart-contract-using-python-web3-tools/
https://blog.arashtad.com/blockchain/ethereum/smart-contracts-using-solidity/
https://blog.arashtad.com/blockchain/ethereum/smart-contracts-using-solidity/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ ‘ DESIGN AND DEVELOPEMENT SOLUTIONS

Installing VS Code

IF you are going to install VS Code on Linux, you are an the same page as me and you can follow along with this
installation quide. Otherwise, don't worry! Because there is nothing fancy about installing VSCode on other operating
systems. On Linux, download the file from this link and after it has been downloaded, open the terminal in the
download directory. Then, enter this command:

sudo apt install
Wait for a few minutes and it should get installed. Now, you can open the VS Code and create a folder for aur new
project.

Get Started - Solidity and web3 codes - Visual Studio Code

File Edit Selection View Go Run Terminal Help

EXPLORER -) GetStarted X 1) &=

v SOLIDITY AND WEB3 CODES

2 Visual Studio Code
I Editing evolved
Qo Start Walkthroughs
* Get Started with VS Code
Discover the best customizations to make VS Code yours.
* Learn the Fundamentals
Jump right into VS Code and get an overview of the must-
have features.
Recent
lidity ~/Desktop = Boost your Productivity
&
'aY
{3} +/ Show welcome page on startup
> OUTLINE
@0A0 &2 0
2 4 —_
@OmO® WmMOeTEZRHF =2 OBonem == R e

VS Code has a built-in terminal using which we can run our codes a lot easier and faster. So, to open one, click on the
terminal and then click on the new terminal.

* * * * *

PAPER . All Rights Reserved.

https://code.visualstudio.com/docs/?dv=linux64_deb
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

File Edit Selection View Go Run Terminal Help

@ EXPLORER

v SOLIDITY AND WEB3 CODES

DESIGN AND DEVELOPEMENT SOLUTIONS

Get Started - Solidity and web3 codes - Visual Studio Code
New Terminal

Ctrl+Shift+

Run Selected Text

Configure Ta

Configure D

Walkthroughs

* Get Started with VS Code

Discover the best customizations to make VS Cade yours.

* Learn the Fundamentals
Jump right into VS Code and get an overview of the must-
have features.
Recent
y ~/Desktop [Boost your Productivity
)-\'\.
0 +/ Show welcome page on startup
> OUTLINE
®oA0
_ 2 4 — pa— p—
OmB mO0EYBRAEE
- Lo L (2
Creating the project folder:

& 0
0‘9@@@-_5?5@,15:35

So, you can see that a terminal opens. We create a folder inside to write a simple storage code again this time with VS
Code:
nkdi r web3_si npl e_storage

And we get into the folder by typing:
cd web3_si npl e_storage

And then, we create a file named SimpleStarage.sol using
touch Si npl eSt orage. sol

*

* *
2023 -

. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

SimpleStorage.sol - Solidity and web3 codes - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER 4 SimpleStorage.sol X m -
v SOLIDITY AND WEB3 CODES web3__simple_storage » # SimpleStorage.sol
:) ~ web3__simple_storage 1

4 SimpleStorage.sol

a”

—ﬁﬂ
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL [] bash - web3_simple storage +~ [0 @ ~ X
mohamad@mohamad -Lenovo-6510:~/Desktop/solidity/Solidity and web3 codes$ mkdir web3_ simple_storage
mohamad@mohamad - Lenovo-6510:~/Desktop/solidity/Solidity and web3 codes$ cd web3 simple storage
mohamad@mohamad -Lenovo-6510:~/Desktop/solidity/Solidity and web3 codes/web3_ simple storage$ fouch SimpleStorage.sol
mohamad@mohamad -Lenovo-G510: ~/Desktop/solidity/Solidity and web3 codes/web3_simple_storage$ [

rf;‘\

&

{é‘} > OUTLINE

®oAL Ln1,Col1 Spaces:4 UTF8 LF PlainText & 0

@-!l__!@g?!E‘—g 0.9@@.’@-‘?5@16:55

After opening the created file, we can copy the simple storage code that we wrote in the "Smart contracts using Solidity
tutorial” and run it.

/| SPDX-License-ldentifier: MT
pragma solidity >= 0.6.0 < 0.9.0;

contract Sinpl eStorage {
ui nt 256 Sal ary;

/1l This is a conment!
struct Enpl oyees {
ui nt 256 Sal ary;
string nane;

}

Enpl oyees[] public Enpl oyees;
mappi ng(string => uint256) public naneToSal ary;

function store(uint256 _Salary) public {
Salary = Sal ary;

* * * * *

PAPER . All Rights Reserved.

DESIGN AND DEVELOPEMENT SOLUTIONS

https://blog.arashtad.com/blockchain/ethereum/smart-contracts-using-solidity/
https://blog.arashtad.com/blockchain/ethereum/smart-contracts-using-solidity/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

}

function retrieve() public view returns (uint256) {
return Sal ary;

}
functi on addEnpl oyees(string nenory _nane, uint256 _Sal ary)
public {
Enpl oyees. push(Enpl oyees(_Sal ary, _nane));
naneToSal ary[_nane] = _Sal ary;
}

Notice that VS Code must have Solidity pre-installed but if you are cading with other text editors, you can head over to
this link For installation quide on your operating system.

Writing the Python Scripts

Now in order to deploy the above contract, we create a python file called deploy.py. We can do this by typing:

touch depl oy. py
And in this file, we write:

with open("./SinpleStorage.sol","r") as file:
sinple_storage file =file.read()

Now, in order to compile our Solidity code, we need to install a package called "py-solc-x". Ta do that, write this in your
terminal:

pip install py-solc-x

Once we installed the package, we import it into our python file like this:

fromsol cx inport conpile_standard

And, here is the rest of the python code:

i mport json

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://docs.soliditylang.org/en/v0.8.9/installing-solidity.html
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

with open("./SinpleStorage.sol","r") as file:
sinple_storage file =file.read()

conpil ed_sol = conpile_standard ({
"l anguage":"solidity",
"sources": {"SinpleStorage.sol":{"content"
sinpl e_storage file}},
"setting": {
"out put Sel ection":{
txreoU*n ["abi ", "netadata", "evm byt ecode"”, "evm sour ceMap"] }

}

},solc_ve}sionfO.G.UU)

W th open("conpiled_code.json","w') as file:
j son. dunp(conpi | ed_sol ,file)

Notice that we should also check the version of our Solidity when it is installed and also check in our .sol file. Now, in our
console, if we write:

pyt hon3 depl oy. py
We will see that a json file is created in the file directory leading us to some key data. The data is about the contract

that we have just written such as Byte Code, ABI (which stands for abstract binary interface), the address of the
contract, and so on.

In order to get out a little of this important data, we write the following scripts:

byte_code = conpiled_sol["contracts"]["Si npl eSt orage. sol "]
"Sinpl eStorage"]["evni']["bytecode"]["object"]

abi = conpiled _sol["contracts"]["Si npl eSt orage. sol "]["Si npl eSt orage"] [
"evm'][“abi”]

Now, if we print the abi and byte_code, we will see some large output. These key data will later be used to run our
smart contract.

Using Python Web3 tools alongside Ganache as A Simulated Blockchain

Now, we are going to use Ganache as a simulated blackchain to deploy our smart contract simple storage on it. We also
continue using our python web3 tools to deploy the smart contract on Ganache IDE simulated blockchain. Furthermare,
we have provided some guides throughout the article for installing web3.py module.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= 4 N

Managing the scripts

Previously, we learned how to retrieve the bytecode and the ABI of the SimpleSorage.sol contract. Now, we've brought
the codes with some editions to make it work mare perfectly

/| SPDX-License-ldentifier: MT
pragma solidity >= 0.6.0 < 0.9.0;
contract SinpleStorage {

ui nt 256 Sal ary;
/1l This is a comment!
struct Enpl oyees {
ui nt 256 Sal ary;
string nane;

}

Enpl oyees[] public enpl oyee;
mappi ng(string => ui nt256) public naneToSal ary;

function store(uint256 _Salary) public {
Salary = _Sal ary;
}

function retrieve() public view returns (uint256)({
return Sal ary;
}

functi on addPerson(string nenory _name, uint256 _Salary) public {
enpl oyee. push(Enpl oyees(_Sal ary, _nane));
nanmeToSal ary[_nane] = _Sal ary;

And the deploy.py script gaes like this:

i mport json

fromweb3 inport Wb3

fromsolcx inport conpile _standard, install _solc
I nport os

fromdotenv inport | oad_dotenv

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= 4 N

| oad_dot env()

with open("./SinpleStorage.sol™, "r") as file:
sinple_storage file =file.read()

install _solc("0.6.0")
print("installed")

conpi l ed_sol = conpil e_standard({
"l anguage": "Solidity",
"sources": {"SinpleStorage.sol": {"content": sinple _storage file}},
"settings": {
"out put Sel ection": {
ELF ["abi ", "netadata", "evm bytecode",
"evm byt ecode. sour ceMap"]
}
}

}:solc_versionﬂ0.6.0”,)

wi th open("conpiled _code.json", "wW') as file:
j son.dunp(conpil ed_sol, file)

byt ecode = conpiled _sol["contracts"]["Si npl eSt orage. sol "] [
"Si npl eStorage"]["evni]["bytecode"]["object"]

abi = json.loads(conpiled sol["contracts"]["Si npl eStorage. sol "] [
"Si npl eStorage"]["nmetadata”])[" out put”]
[ll abl n]

Notice that you should also install "dotenv package" using the following command in the terminal:

pip install python-dotenv

Bytecode and ABI:
Now if you print and bytecode:
print(abi)
Result:
[{"inputs': [{'internal Type': 'string', 'name': '_name', 'type’
"string'}, {'internal Type': "uint256', 'name': '_Salary', 'type':

"uint256'}], '"nane': 'addPerson', 'outputs': [], 'stateMutability':

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
! N

"nonpayable', "type': 'function'}, {'inputs': [{'internal Type':
‘uint256', 'nane': '', 'type': 'uint256'}], 'nane': 'enployee',
"outputs': [{'internal Type': 'uint256', 'nane': 'Salary', 'type':
‘uint256'}, {'internal Type': 'string', 'nane': 'nane', 'type'
"string'}], 'stateMutability': "view, 'type': 'function'}, {'inputs':
[{"internal Type': 'string', 'name': "', '"type': 'string'}], 'nane':
"naneToSal ary', 'outputs': [{'internal Type': 'uint256', 'nane': "',
"type': 'uint256'}], 'stateMutability': 'view, 'type': 'function'},
{"inputs': [], '"name': 'retrieve', 'outputs': [{'internal Type'
‘uint256', 'nane': '', 'type': 'uint256'}], 'stateMutability': 'view

"type': 'function'}, {"inputs': [{'internal Type' : 'uint256', 'nane':
' _Salary', 'type': 'uint256'}], 'nane': 'store', 'outputs': [],
"stateMutability': 'nonpayable', "type': 'function'}]

print (bytecode)

Result:

608060..l ong nunber ... 6000033
Besides, once you run the pythan script, you will see that a json file is created in the directory as the result of
jsan.dump (compiled_sal, file] line.

Deploying the Smart Contract Using Python on Ganache

So, let's deploy our smart contract using Python web3 tools on a blockchain. For our First experiences and for learning
purposes, we use Ganache (remember we used JavaScript VM and injected web3 as our test networks in remix IDE).

Ganache is a simulated blockchain designed for test and learning purposes and helps us develop our local blockchain. It
is also worth mentioning that it is not connected to any other blockchains out there. However, it acts just the same as
real-world one.

Once you install and open Ganache, you will be able to see that you are given 10 accounts with their own addresses and
private keys on them. (To see the private key, just click on the key sign on the right side of every account)

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

A DESIGN AND DEVELOPEMENT SOLUTIONS

Ganache _ O

ACCOUNTS (23) BLOCKS () TRANSACTIONS ED CONTRACTS (Pj EVENTS (‘, LoBS
N N e i

CURRENT BLOCK GAS PRICE GAS LIMIT HARDFORK HNETWCORK ID RPC SERVER MINING STATUS WORKSPACE SAVE
] 20000000000 6721975 MUIRGLACIER 5771 HTTP:/127.0.0.1.7545 AUTOMINING QUICKSTART

MNEMONIC HD PATH
denial walk night wealth trust s ng 0 ss horror across tuition m/ 44! account_index

ADDRESS BALANCE TX COUNT INDEX

©x142FDb838d3E8389B546E4bBA33111894a461940 100.00 ETH 0 0

ADDRESS BALANCE TX COUNT INDEX

0xA590b2b5AaBa61a2bfcf2a549432A4E0aEF12676 100,00 ETH 0 1

ADDRESS BALANCE TX COUNT INDEX

©x73EDCO6CE97789659CE3DD2087 fFa17A8733f24A 106.00 ETH] 2

ADDRESS BALANCE TX COUNT INDEX

0x743827d1c07dc157C14068d3Cf69FE48c28f166D 100.00 ETH 0 3

ADDRESS BALANCE TX COUNT INDEX

OxeE6aDaFB12C439bBA0ObF5CF50¢3936aB2C67584 100.00 ETH] 4

ADDRESS BALANCE TX COUNT INDEX

0x5939893c0a7A8028C35F35d05767D819E95B5¢48 100.00 ETH 0 5

DOCE =50 R 619

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ ‘ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

DONE

@.!’__!a.?.!ﬁgi OOQE =7 AR 16s2s

And if you lock at the top of the Ganache IDE, you will be able to see the RPC server address and NetworkID. Bath of
them are necessary for us to connect to the blockchain.

Installing web3

Now, the next step to connect to the blockchain using python is ta install web3.py. If you haven't read the getting
started with Dapps tutorials, you can follow along with these guides to be able to install it on your operating system.
However, These guidelines only show you how to install it on Linux. For Windows, you might need to install same Visual
Studio C dependencies that are mentioned in the raised Error in the command prompt after you attempt to install it on
windows. Now on Linux, on VS Code terminal, write these 3 commands to be able to install the web3 module:

pip install eth-tester web3
pip install eth-tester[py-evni
pi p3 install web3

And now we import the web3 module:

fromweb3 i nport Web3

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

Connecting to Ganache CL |

To connect to the blockchain instead of Metamask, we need an HTTP provider which for Ganache is
HTTP:/ /127.0.0.1:7545 right under the RPC server. We alsc need the chain id which we copy from the network id on top
of the Ganache user interface and the address in addition to its private key is also required:

web3 = Web3(Web3. HTTPPr ovi der ("HTTP: // 127. 0. 0. 1: 7545"))
chain_id = 1337
address = "0Oxae21A27b5771Ee8D53eCf 5b7b856B33C3B4AEE5SD!

private_key =
"0x9cf 74f b71811e4f 360df 39e3c13790d8f de312d353b8972937c8f 596d052de45"

Ready for Deploying the Smart Contract

After defining the provider and an account, it is time to define our contract using the ABI and the Bytecode of the
SimpleStorage:

Si npl eSt orage = web3. eth. contract (abi = abi, bytecode = bytecode)

What's A Nonce?

Then, we need a nonce. A nonce is the abbreviation of a ‘number used only once”. Besides, it's a number that is added
to an encrypted (hashed) block in a blockchain that when it is rehashed, meets certain difficulty levels. The nonce is the
number that miners are salving for. Here to get a nonce from our address or in other words to get the latest transaction

of our address, we write:

nonce = web3. et h. get Transacti onCount (addr ess)

And if you print this variable, the terminal returns 0 as we have had no transaction. Having defined all the above
variables, we can now submit the transaction that deploys the contract:

transaction = Sinpl eSt orage. constructor (). buil dTransaction({
"chainld": chain_id,

"gasPrice": web3.eth.gas_price,

"fronf: address,

"nonce": nonce,

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

Then we sign the transaction by writing:

signed_txn = web3. et h. account. sign_transaction(transacti on,
private key=private_ key)

It is now the time to finally deploy our contract. As it might take some time when we work with real blockchain test nets
and providers like Infura, we print the level we are in, to be able to track the process at the time of running the cade:

print (" Depl oying Contract..”)

So, our raw transaction is the one we deploy using the signed transaction:

tx_hash = web3. eth. send_raw transacti on(si gned_t xn. rawlransacti on)

After the transaction is confirmed, we can say that it is finally mined and our contract is deployed to the blockchain:

print("Waiting for transaction to finish...")
tx_receipt = web3.eth.wait_for_transaction_recei pt(tx_hash)

print(f"Done! Contract deployed to {tx_receipt.contractAddress}")

And if we run the code by typing:

pyt hon3 depl oy. py
In the terminal, we will see a result like this:

Depl oying Contract... Waiting for transaction to finish... Done!l
Contract depl oyed to 0x88A33c204C622683Dc2b0aaD78d51B86a9b35CAB

Which approves the contract has been successfully deployed. Congratulations!

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

A DESIGN AND DEVELOPEMENT SOLUTIONS

After Deployment Notes

Now if we go to Ganache and check the balance of the first account that we copied its address and private key, we will
see that it is 99.99 which means that some of its balance has been used for the gas fee.

Ganache

o i & — = T
ACCOUNTS gg\, BLOCKS | ,j_—): TRANSACTIONS (ED CONTRACTS (Q\ EVENTS (@) LOGS
ey S’ N i Py

CURRENT BLOCK GAS PRICE GAS LIMIT HARDFORK NETWORK ID RPC SERVER MINING STATUS WORKSPACE
1 20000000000 6721975 MUIRGLACIER 5777 HTTP://127.0.0.1:7545 AUTOMINING QUICKSTART

MNEMONIC HD PATH
planet fork fee unable artist divide chief emplc ch pair direct pencil

ADDRESS BALANCE TX COUNT INDEX

0xae21A27b5771Ee8D53eCf5b7b856B33C3B4AEESD 99,99 ETH 1 0

ADDRESS BALANCE TX COUNT INDEX

0x694060771891205CC6B7C232F0e5491eC109061B 100.00 ETH] 1

ADDRESS BALANCE TX COUNT INDEX

©xbce35E707AD666607DOCDBO691a349E8Be804D30 100.00 ETH] 2

ADDRESS BALANCE TX COUNT INDEX

0x01dB78f69B2B08B76802B47d8fCAE7DAEB85480 100,00 ETH] 3

ADDRESS BALANCE TX COUNT INDEX

OxCEO3EC67fBC58dA4abEBDO50118eb5FCO9dd13fC 106.00 ETH] 4

ADDRESS BALANCE TX COUNT INDEX

0x867C070622758532e771A75b256380b226D8eEe4 100.00 ETH) 5

OmMB - mMCEYTRRFEW OORB == 5B e

And if we head over to transactions tab on the top, we will be able to see our transaction is recorded there.

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

1 DESIGN AND DEVELOPEMENT SOLUTIONS

Ganache - O

o . - = . Ja BN

(©) accounts (‘=2) BLocks TRaNsacTioNs (] contRacts () EVENTS () Locs

\f]/ __/ \=/ _f_/l \‘__ /

CURRENT BLOCK GAS PRICE GAS LIMIT HARDFORK NETWORK ID RPC SERVER MINING STATUS WORKSPACE SAVE
1 20000000000 6721975 MUIRGLACIER 5771 HTTP:/127.0.0.1.7545 AUTOMINING QUICKSTART

TXHASH

0x488eb609aekctO9eachtald2191d367cbest4898ef97120d9f5ea2bc97bbc1dos

FROM ADDRESS Cl ONTRAC

©Of I KN FLER LR R, OHQEaE s A f s

In this section, we are gaing to see how we can avoid pasting our private key inside our script file and save it
somewhere inaccessible to athers. This may happen because we may share our scripts on GitHub. The first thing that
we should do here is to export the private key in our console:

export
PRI VATE _KEY=0x9cf 74f b71811e4f 360df 39e3¢c13790d8f de312d353b8972937c8f 596d052de

And inside the script instead of pasting the private key itself, we write:

private key = os.getenv("PR VATE KEY")
And now this way the private key saves just the same private key as we had pasted in front of it. But notice that this
method anly works on Linux and Mac 0S, but not on Windows. However, there are ways to cover this on Windows. There

is also another way to save the private key somewhere safe and that is creating a .env file in your directory. To do so,
first, make sure you have dotenv python module installed on your os the way we did in the last section of our tutorial

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
! N

and load it. In summary, make sure you add the following scripts in deploy.py file:

export PRI VATE_KEY
=0x9cf 74f b71811e4f 360df 39e3c13790d8f de312d353b8972937c8f 596d052de45

And also far private key keep the private_key = os.getenv("PRIVATE_KEY") where itis. And in the .env file, write:

export PRI VATE_KEY
=0x9cf 74f b71811e4f 360df 39e3c13790d8f de312d353b8972937c8f 596d052de45

Also to avoid publicizing it on GitHub create a .gitignare file and in it, write:

. env

How to Interact with A Smart Contract Using Python Web3

Now that we have deployed the SimpleStorage.sol contract to the simulated blockchain on Ganache, it's time to interact
with it. Suppose we want to store a number like 38 and then be able to retrieve it as well, we write:

sinpl e_storage = web3. eth. contract (address=tx_recei pt.contract Address
, abi =abi)

print(f
"Initial Stored Value {sinple_storage.functions.retrieve().call()}")

greeting_transaction = sinple_storage. functions. store(38)
. bui I dTransacti on({

"chainld": chain_id,

"gasPrice": web3.eth.gas price,

"fronf: address,

"nonce": nonce + 1,

1)

signed_greeting txn = web3. et h. account. sign_transacti on(
greeting transaction, private key=private_ key)

tx_greeting _hash = web3. eth.send raw transacti on
(signed_greeting_txn.rawlransacti on)

print("Updating stored Val ue..”)

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

' @

tx_receipt = web3.eth.wait _for _transaction_receipt(tx_greeting_hash)

print(sinple_storage.functions.retrieve().call())

Notice that for the nonce, we wrate nonce+1 because every time we do something an blockchain the nonce needs to be
unique. And also remember that if you call the contract and retrieve a number, there is no need for any transaction and
before saving any number to the contract, the result of retrieve will be 0 but after saving the number by creating the
transaction on the contract (for storing the number) the answer ta retrieve call will be the saved number which is 38.
Now let’s see the result on the terminal:

Initial Stored Value 0 Updating stored Value... 38
Now if we go to Ganache, to the transactions, we are going to see the contract call with the blue color and the details of
the transaction.

Ganache - O

(©) accounts (39) BLocks @TRANSACTIDNS (g) contmacts (1) events (i) Locs
i) L &/ Bt L

¥y

CURRENT BLOCK GAS PRICE GAS LIMIT HARDFORK HNETWORK ID RPC SERVER MINING STATUS WORKSPACE
7 20000000000 6721975 MUIRGLACIER 5777 HTTP:/127.0.0.1:7545 AUTOMINING QUICKSTART

TXHASH
0x815bd9af627b42c0f716c3f3c3cf401c342344de19b21756912a117ceBa569e0

TXHASH

0xb42e37619679ce97ee3chaee6675bf37a631e6326abe93feeba23b95¢5b2969b

FROM ADDN CRI INTRACT ADD!

TXHASH

0x3ebd45df6fda5a7c5fd54f756achfb52a55b676a07b3d0176a8acc6b8b3bosb7

CREATED CONTR

OmMB® MOETPZRE ®E Y TDECE Rl gt

* * * * *

PAPER . All Rights Reserved.

| § DESIGN AND DEVELOPEMENT SOLUTIONS

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

A DESIGN AND DEVELOPEMENT SOLUTIONS

Ganache - O

-
7/
7

i o = £ 7N
(2,) ACCOUNTS o) BLOCKS TRANSACTIONS ([5]) CONTRACTS ([\) EVENTS £q) LOGS
&/ ARG @ &) N/ D

CURRENT BLOCK GAS PRICE GAS LIMIT HARDFORK HNETWORK ID RPC SERVER MINING STATUS WORKSPACE
7 20000000000 6721975 MUIRGLACIER 5771 HTTP://127.0.0.1.7545 AUTOMINING QUICKSTART

~mek TX @x815bd9af627b42c0f716c3f3c3cf401c342344de19b21756912a117ceBa569e0

SENDER ADDRESS T0 CONTRACT ADDRESS
0xae21A27b5771Ee8D53eCf5b7b856B33C3BLAEESD 0x19f9192E3B6D328caFc907AB4BOL604DICLTLBFI

VALUE BASUSED BAS PRICE BASLIMIT MINED IN BLOCK
0.00 ETH 41446 20000000000 41446 5

EVENTS

OmME MTOETBEE NE QoneBEE® AR s

And this our complete pythan code:

I mport json

fromweb3 i nport Web3

fromsolcx inmport conpile standard, install _solc
I nport os

fromdotenv inport | oad _dotenv

| oad_dot env()

with open("./SinpleStorage.sol", "r") as file:
sinple_storage file = file.read()

install _solc("0.6.0")
print("installed")

conpi | ed_sol = conpi |l e_st andar d(

{

"l anguage": "Solidity",

"sources": {"SinpleStorage.sol": {"content": sinple_storage file}},
"settings": {

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= 4 N

"out put Sel ection": {

II*II.

"*o ["abi", "netadata", "evm bytecode",
"evm byt ecode. sour ceMap”]

}
}
}

},solc_version="0.6.0",)

wi th open("conpil ed _code.json", "w') as file:
j son. dunp(conpi l ed_sol, file)

byt ecode = conpiled _sol["contracts"]["Si npl eSt orage. sol "] [
"Sinpl eStorage"]["evm'] ["bytecode"]["object"]

abi = json.loads(conpiled sol["contracts"]["Si npl eSt orage. sol "] [
"Sinpl eStorage"]["netadata"])["output"]
[II abi n]

web3 = Web3(Web3. HTTPProvi der ("HTTP: //127.0.0. 1: 7545"))
chain_id = 1337

address = "0Oxae21A27b5771Ee8D53eCf 5b7b856B33C3B4AEESD!

private _key = os.getenv("PR VATE KEY")

print(private_key)

Si mpl eSt orage = web3. et h. contract (abi = abi, bytecode = byt ecode)
nonce = web3. et h. get Transacti onCount (addr ess)

transaction = Sinpl eStorage. constructor (). buil dTransacti on({
"chainld": chain_id,

"gasPrice": web3.eth.gas_price,

"fronl: address,
"nonce": nonce,

1)

si gned_t xn
private_key

web3. et h. account . si gn_transacti on(transacti on,
private_key)

print (" Deploying Contract...")
tx_hash = web3. eth. send_raw transacti on(si gned_txn. rawlransacti on)
print("Waiting for transaction to finish...")

tx_receipt = web3.eth.wait _for_transaction_receipt(tx_hash)

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= WA

print(f"Done! Contract deployed to {tx receipt.contract Address}")
#interacting with the depl oyed contract

si npl e_storage = web3. eth. contract (address=tx_recei pt.contract Address,
abi =abi)

print(f

"Initial Stored Value {sinple_storage.functions.retrieve().call()}")
greeting_transaction = sinple_storage. functions. store(38

) . bui I dTransacti on({

"chainld": chain_id,

"gasPrice": web3.eth.gas_price,

"fronl': address,
"nonce": nonce + 1,

})

signed _greeting txn = web3. et h. account. sign_transacti on(
greeting_transaction, private_key=private_key)

tx_greeting_hash
= web3. eth. send_raw_transacti on(si gned_greeting_txn.rawlransacti on)

print("Updating stored Value...")
tx_receipt = web3.eth.wait_for_transaction_receipt(tx_greeting _hash)

print(sinple_storage.functions.retrieve().call())

I nteracting with Smart Contracts Using Commnad Line Interface (CL1)

Up to now, we have contributed with the Ganache interface. But, what if we want ta interact with it using Command
Line Interface also known as CLI? To do that, we need to install a couple of things. First, you should install node.js using
this link.

You also need to install ganache-cli and there are 2 ways te so do that.

1. Installing yarn

npminstall —global yarn
And then:

yarn gl obal add ganache-cl
And

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://nodejs.org/en/download/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

2. Installing through npm command:

yarn gl obal add ganache-cli
You can make sure about the installation by writing:

npminstall -g ganache-cli
Once you made sure that it has been installed, you can write in your terminal:

ganache-cli -version
And this is going to show all the data of the Ganache account without the interface being open, including the accounts,
private keys, and so on.

You might always need to get the same private keys from the Ganache CLI. So, you can type:

ganache-cl i

And this gives you always the same wallet addresses. Also, natice that when you are working with the ganache-cli, you

should have anather terminal on VS Code to run the deploy.py file and interact with the smart contract so that you can
use the first ane for ganache-cli.

ganache-cli —determnistic
Last Steps of Interacting with A Smart Contract Using Python Web3: Infura Host Node

Up ta now, we have deployed our contracts on different test net blockchains. In Remix IDE, we deployed our contract on
injected web3 and JavaScript VM, and on Python, we have used Ganache as a simulated blockchain. Now, let's deploy
our smart contract using Python Web3 tools. If we want to switch to mainnet blockchain and run our contract
transactions on it, we have 2 options. The first one is to download all the Ethereum blockchain recards using the Geth
command from the go Ethereum library. Although this will give you a full node Ethereum blockchain locally, it is going to
cost you so much memory, bandwidth, and a full-time running computer only to give you a full node on the Ethereum
blockchain. However, this method is useful for some purposes but for our case, we can use another method which is
using a host node like Infura.

Using Infura:

So in order to use Infura, you need to simply sign up or log in (if you have signed up before). Then, after you enter your

profile, copy the required endpoint (which could be mainnet or any testnet like Rinkeby, Faucet, Ropsten .etc] from the
settings and paste it into the HTTP Provider of your script.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ ‘ DESIGN AND DEVELOPEMENT SOLUTIONS

infura.io @

DOCS v RESOURCES v EN w SIGN UP LOGIN

E INFURA PRODUCTS v CUSTOMERS ~ PRICING

The World’s Most b
Powerful Blockchain
Development Suite

New to Infura? Get started for free.

Brought to you by Need a custom solution? Contact us

CREATE NEW PROJECT

PRODUCT

Ethereum

PROJECT NAME

python_test

Here, we should use Rinkeby because we do not want to spend real ETH! And as you remember we have received some
Rinkeby ETH from its Faucet in our Metamask wallet Rinkeby account. The format of the endpaint is like this:

https://.infura.iol/v3/

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

4 N DESIGN AND DEVELOPEMENT SOLUTIONS

Ethereum API | IPFS API & Gateway | ETH Nodes as a Service | Infura — Mozilla Firefox

EE Ethereum API| IPFSAPI & C X

& (&7 Q & nt infura.io,

PROJECT ID PROJECT SECRET

86caf94b614bi4b3bB4Tcebl 8de adB840667c3784bce bb38e6062e

ENDPOINTS RINKEBY

htt|

4 Mainnet

Ropsten

Kovan

DELETE PR

Any applica s
yapk Gorli
be ableto a

Palm Mainnet

Palm Testnet

@--;E@E‘EVEEFF BoeEE 3R we

We can copy this to our code, so instead of:

web3 = Web3(Web3. HTTPProvi der ("HTTP: //127. 0. 0. 1: 7545"))
We write:
web3 = Web3(Web3. HTTPProvi der("https://.infura.io/v3/ "))

Notice that you should enter the type of your endpaint (which is Rinkeby here) and your special project ID because it
varies from one account to another. Also, remember that you shouldn't share your Infura endpoint URL with anybady so
we use the same technique as we used for the private key. On .env file we write:

export Infura EndPoint = "https://.infura.io/v3/ "

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

A DESIGN AND DEVELOPEMENT SOLUTIONS

And in the deploy.py file we write:

web3 = Web3(Web3. HTTPPr ovi der (os. get env("I nfura_EndPoi nt")))

Smart Contract Using Python Web3 Tip: Getting the Chain 1D

And now we need a chain ID which we can get from

Chainlist —Mozilla Firefox

EE Ethereum API| IPFSAPIE C % [} Chainlist

& (] O 8 https://chainlist.org

Chainlist

Helping users connect to
EVM powered networks

@ Testets m B oxoses.7117

Search Networks Rinkeby

Chainlist is a list of EVM networks. Users can use the
information to connect their wallets and Web3 Rinkeby Boba Network Rinkeb...
middleware providers to the appropriate Chain ID and - UITE
Network ID to connect to the correct chain. s Al

Add Your RPC +
Rinkeby RPC URL List
RPC Server Address Height Latency Score

() View Source Code 8 Join our Discord n eby.infura.io/v3/${INFURA_API_KEY} &

NFURA_API_KEY} [

@-.L i@@s?ﬁ%‘ 'EEI‘@IEIQ?HEZM:S&

For Rinkeby, the chainid is 4. So, we enter it in our code:

* * * * *

PAPER . All Rights Reserved.

https://chainlist.org/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

A B DESIGN AND DEVELOPEMENT SOLUTIONS

Then, we need to copy our Metamask address and private key from our wallet account and paste it into our python file.
(private_key on .env file).

And if we run our deploy.py file, the result will be as follows:

i nstall ed Deploying Contract... WAaiting for transaction to finish...
Done! Contract deployed to Ox7FO0f c6939B12CE506337294c4c96C2d3F64F9DF6
Initial Stored Value 0 Updating stored Value... 38

As you can see, since we are running our contract on a mainnet, again the process is a lot slower compared to what we
saw when we used Ganache.

Rinkeby Ether scan:

You can also track the above transaction from (https://rinkeby.etherscan.io/) using the receipt transaction contract
address that we have just printed on the terminal.

Contract Address 0x7F0fc6939B12CE506337294c4¢96C2d3F64FIDF6 | Etherscan — Mozilla Firefox

BB Ethereum API | IPFSAPI& ¢ X M Contract Address 0xTFOfce X | 4
& (6] Q

O 8 ntt etherscan.io

m Etherscan Al Filters

Rinkeby Testnet Network
@ Contract 0x7F0fc6939812CE506337

Contract Overview More Info

Balance: 0 Ether My Name Tag: Not Available

Contract Creator: 25e681ee76469e4cf8... attn

Contract

Txn Hash Method (0 Age From T Value

Store 041075 11 mins ago 5e681ee76469e4ci8 30 9b12ce50633. 0 Ether

11 mins ago 25e681ee76469e4ci8 IN [Contract Creation 0 Ether

& This website use es to improve your experience and has an updated P

@-!‘—_’!@@E‘!’iéi WRBeE =501 E s

You can see 2 transactions are recorded. The first one is the one related to when we deployed the contract.

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

A DESIGN AND DEVELOPEMENT SOLUTIONS

Rinkeby Transaction Hash (Txhash) Details | Etherscan — Mozilla Firefox

EE Ethereum API | IPFS API ™ Rinkeby Transaction Hash [X +
& by etherscan.io

m Etherscan All Fitters

Rinkeby Testnet

Transaction Details

Transaction Hash X 77 de cf01dac116tc04
Status
?) Block:

Timestamp: ® 12 mins ago (0:50:50 AM +UTC)

7) From:
) To [Contract 0x7f

™ This website

@-s‘_ i@sgvag‘ WO eE =50 E s

And the 2nd one is related to when we stored the number 38 in it.

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

A DESIGN AND DEVELOPEMENT SOLUTIONS

Rinkeby Transaction Hash (Txhash) Details | Etherscan — Mozilla Firefox

EE Ethereum API|IPFSAPI& (X M Rinkeby Transaction Hash [X +

& (&7 QO & htt by etherscan.io

m Etherscan All Fitters

Transaction Hash 0x70e06a4b4b4975dd2d 1 cec2e5517b54be5643f1 35d08ad446bdcad3fh2aabbebe [0
Status
?) Block:

Timestamp: ® 12 mins ago (Mar-29-2022 10:51:35 AM +UTC)

7) From:
?To Contract 0x7f0fc6939b12ce50633729

% This website use s 10 improve your experience and has an updated P

@-!;Eﬁﬁgwiﬁi 0@@@@&?5@,15:34

Congratulations! We have finally managed to deploy a smart contract using Pythan Web3 taols on mainnet.

Our complete python cade goes like this:

I nport json

fromweb3 i nport Web3

fromsolcx inport conpile standard, install _solc
I nport os

fromdotenv inport | oad_dotenv

| oad_dot env()

wi th open("./SinpleStorage. sol ",
sinple _storage file = file.read()

r')y as file:

install _solc("0.6.0")
print("installed")
conpi | ed_sol = conpil e_standard({

"l anguage": "Solidity",
"sources": {"SinpleStorage.sol": {"content": sinple storage file}},

* * * * *

PAPER . All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= 4 N

"settings": {
"out put Sel ection": {

"y n o,

ke ["abi ", "netadata", "evm bytecode",
"evm byt ecode. sour ceMap”]
}
}
1

} sol c_version="0.6.0",)

wi th open("conpil ed _code.json", "w') as file:
j son. dunp(conpil ed_sol, file)

byt ecode = conpiled_sol["contracts"]["Si npl eSt orage. sol "] [
"Sinpl eStorage"]["evm'] ["bytecode"]["object"]

abi = json.loads(conpiled sol["contracts"]["Si npl eSt orage. sol "] [
"Si npl eStorage"]["netadata"])[" out put"]
[II abi II]

web3 = Web3(Web3. HTTPProvi der (os. getenv(" I nfura_EndPoint")))
chain_id = 4

address = "Ox25E681EE76469E4cF846567b772e94e082907117"
private _key = os.getenv("PR VATE KEY")

Si mpl eSt orage = web3. et h. contract (abi = abi, byt ecode = byt ecode)
nonce = web3. et h. get Transacti onCount (addr ess)

transaction = Sinpl eStorage. constructor (). buildTransacti on({
"chainld": chain_id,

"gasPrice": web3.eth.gas _price,

"fronl': address,
"nonce": nonce,

})

signed_txn = web3. et h. account. si gn_transacti on(transacti on,
private_key=private_key)

print (" Deploying Contract...")

tx_hash = web3. eth. send raw transacti on(si gned_txn. rawlransacti on)
print("Waiting for transaction to finish...")

tx_receipt = web3.eth.wait_for_transaction_recei pt(tx_hash)
print(f"Done! Contract deployed to {tx receipt.contract Address}")

#interacting wth the depl oyed contract

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= WA

si npl e_storage = web3. et h. contract (address=tx_recei pt.contract Address,
abi =abi)

print(f

"Initial Stored Value {sinple_storage.functions.retrieve().call()}")

greeting_transaction = sinple_storage.functions. store(38

) . bui I dTransacti on({

"chainld": chain_id,

"gasPrice": web3.eth.gas _price,

"fronf: address,

“nonce": nonce + 1,

1)

signed_greeting txn = web3. et h. account. sign_transacti on(
greeting_transaction, private_key=private_key)
tx_greeting_hash

= web3. eth. send _raw transacti on(si gned_greeting_txn.rawlransacti on)
print("Updating stored Value...")
tx_receipt = web3.eth.wait_for_transaction_receipt(tx_greeting _hash)

print(sinple_storage.functions.retrieve().call())

For explanations of the abave cade you can refer to the previous sections. Because this script is the same as the
previous articles with the difference that we have changed the HTTP Provider, the chain id, account address, and the
private key.

Summing Up

In this tutorial, we have got started with python web3 tools to be able to deploy our Solidity smart contracts outside of
Remix IDE. The IDE that we have chosen to wark with is VS Code. We also installed some dependencies to wark with
python web3 tools. Python web3 tools compile the Solidity smart contracts and create some JSON files containing the
bytecode and opcodes and ABI which is necessary to deploy our contracts.

Besides, we learned how to use Ganache IDE as a simulated blockchain. We also used the RPC URI, chain id, test
accounts, their addresses, and private keys to deploy the smart contract called simple storage. We have also managed
to install the web3.py module.

Finally, we have managed to connect to the Infura host node as an alternative for Ganache simulated blockchain. As a
result, we have dealt with a more realistic kind of blockchain. We have also used chainlist as a way ta retrieve the chain
id. Furthermore, As we have deployed our smart contract on the Rinkeby testnet, we checked Rinkeby Etherscan to
check the recards of our transaction on the Ethereum Rinkeby testnet blockchain.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

Join Arashtad Community

Follow Arashtad on Social M edia

We provide variety of content, products, services, tools, tutarials, etc. Each sacial profile according to its features and
purpose can caver only one or few parts of our updates. We can not upload our videos on SoundCloud or provide our
eBooks on Youtube. So, for not missing any high quality original content that we provide on various social networks,

make sure you follow us on as many social networks as you're active in. You can find out Arashtad's profiles an
different social media services.

ONORORONORONORONORORORORONORD)
@ @ (%)) (W
© @ s ® e

®©

OC)
OJ6)
OJC)
IORO)
©®
©@©
@
OJO,
OJO,

OO
®®

e @®®

Get Even Closer!

Did you know that only one universal Arashtad account makes you able to log into all Arashtad netwaork at once?
Creating an Arashtad account is free. Why not to try it? Also, we have reqular updates on our newsletter and feed
entries. Use all these benefitial free features to get more involved with the community and enjoy the many products,
services, toals, tutorials, etc. that we provide frequently.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://github.com/arashtad
https://codepen.io/arashtad
https://jsfiddle.net/user/arashtadcompany/
https://profiles.wordpress.org/arashtad#content-plugins
https://extensions.joomla.org/profile/profile/details/384465#extensions
https://dribbble.com/Arashtad
https://www.behance.net/arashtad
https://www.deviantart.com/arashtad
https://www.flickr.com/photos/arashtad/
https://soundcloud.com/arashtad
https://myspace.com/arashtad
https://www.youtube.com/@arashtad-tutorials
https://vimeo.com/arashtad
https://www.patreon.com/arashtad
https://ashtad.tumblr.com
https://medium.com/@arashtad
https://arashtadstudio.blogspot.com/
https://www.instapaper.com/p/arashtad
https://www.bloglovin.com/@arashtad
https://www.amazon.com/gp/profile/amzn1.account.AH6JBYDDODDTBOOSQO5EG7RQV2UA?preview=true
https://www.slideshare.net/Arashtad
https://goodreads.com/arashtad
https://www.linkedin.com/company/arashtad
https://twitter.com/arashtad
https://vk.com/arashtad
https://www.reddit.com/user/ArashtadStudio
https://www.linkedin.com/company/arashtad
https://twitter.com/arashtad
https://vk.com/arashtad
https://www.reddit.com/user/ArashtadStudio
https://www.quora.com/profile/Arashtad
https://digg.com/@arashtad-company
https://t.me/arashtadstudio/
https://discord.gg/WfB2QTzF4A
https://clickbank.com/
https://warriorplus.com/member/Arashtad
https://graphicriver.net/user/arashtadstudio
https://codecanyon.net/user/arashtadstudio
https://www.ravelry.com/people/Arashtad
https://www.scribd.com/user/567045007/Arashtad
https://www.diigo.com/profile/arashtad
https://triller.co/@arashtad
https://www.torial.com/en/arashtad.co
https://mewe.com/i/arashtadcompany
https://wt.social/u/arashtad-company
https://spreely.com/profile/288050
https://www.taringa.net/Arashtad
https://www.ok.ru/arashtad
https://i.arashtad.com/
https://blog.arashtad.com/newsletter/
https://arashtad.com/feed/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

