‘ ARASHTAD
i\

L ottery Project Using Brownie: A Full Scale Dapp

No comments

ARASHTAD e e . E |
? C/) LDTTERY PROJECT LISINI_: BROWNIE ,
// . / %

DESIGN AND DEVELOPEMENT SOLUTIONS

. / A FULL SCALE DAPP 0 Q s @

ARASHTAD.COM

In thisarticle, we are going to get started with the lottery project using Brownie. The
main purpose of alottery project in every network isto check the reliability of the
randomness and use it for different purposes such asthe lottery itself. I n the lottery
project, we are going to create a decentralized application using Brownie. I n the end,
we will be able to run the smart contract via Etherscan.

Using Browniefor Lottery Project

In this tutorial, we are going to first write a smart contract related to a lottery and write scripts related to testing and
deploying the smart contract. We also want to make it a full-scale decentralized application, meaning that it is going to
be an end-to-end Dapp with easy to use user experience. Every lottery needs a random variable. As randomness is a
very complicated concept when it is going to be applied on the internet and here we are going ta run it via the
blockchain, it must be protected from hacks and cheating. What makes randomness really complex, is that we are
dealing with deterministic variables rather than probabilistic ones. As a result, we are going to use some Chainlink tools
to cover this complexity.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://blog.arashtad.com/blockchain/ethereum/brownie/lottery-project-using-brownie/
https://blog.arashtad.com/blockchain/dapps-using-python/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
! N

In this first part, we only focus on the lottery.sol related to the smart contracts, its dependency files, and the Brownie-
config.yaml in addition to seeing how the Salidity scripts are written and how they work.

Getting Started with the L ottery Project

It is also impartant to notice that this tutorial is written to explain the GitHub repository published by Patrick Alpha C
more explicitly and solve the probable issues that the programmers might face when running and facing bugs related
to the Solidity version or the configuration of the project. With that said let’s get started:

/| SPDX-License-ldentifier: MT
pragma solidity ~0. 6. 6;

i mport

"@hai nl i nk/ contracts/src/v0. 6/interfaces/ Aggregat or V3l nterface. sol ";
I nport " @penzeppel i n/ contracts/access/ Owabl e. sol ";

i nport " @hainlink/contracts/src/v0. 6/ VRFConsuner Base. sol ";

We have first declared the version of Solidity and the license comment befare that. Also, we have imparted 3 necessary
Solidity libraries including AggregatorV3Interface which is used for fetching the Ethereum price from Chainlink oracle,
openzeppelin Ownable.sol which is used for determining the owner of the contract and finally the VRFConsumer.sal
which is used to get a random number.

contract Lottery is VRFConsumerBase, Ownable {
addr ess payabl e[] public players;

address payabl e public recent Wnner;

ui nt 256 public randomess;

ui nt 256 public usdEntryFee;

AggregatorV3lnterface internal ethUsdPriceFeed;

enum LOTTERY_STATE {

OPEN,

CLOSED,

CALCULATI NG_W NNER

}

LOTTERY_STATE public lottery_state;

ui nt 256 public fee;

byt es32 publ i ¢ keyhash;

event Request edRandommess(bytes32 requestld);

constructor (address _priceFeedAddress,

address _vrf Coordi nat or,

address _Ilink,

ui nt 256 _fee,

byt es32 keyhash

)publ i ¢ VRFConsuner Base(_vrf Coordi nator, _link) {
usdeEntryFee = 50 * (10**18);

et hUsdPri ceFeed = AggregatorV3Interface(_priceFeedAddress);
lottery state = LOTTERY_STATE. CLOSED,

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

fee = fee;

keyhash = _keyhash;
}

}

We start the contract named Lottery and determine their declarations ownable, VRFConsumerBase. Inside the contract
we define the variables that we are going to work with including:
e The array of the addresses of the participants in the lottery defined here as players (declared as payable and
public),
e The recent winner who has won the prize in the last lottery,
e The randomness which is the random number we receive from VRFC,
e UsdEntryFee which is the minimum amount that a player needs to participate in the lottery, ethUsdPriceFeed
which is the conversion rate of ETH to USD.

The lottery state is declared as Enum and has 3 states Open: Close, and Calculating winner.
1. Open is when everyone can participate in the lottery,
2. Closed is when nobody can participate
3. Caleulating is used when the random number related to the winner is being calculated.

We also have a constructor for some variables which are going to be explained later.

function enter() public payable {

/1 $50 m ni mum

require(lottery state == LOTTERY_STATE. OPEN) ;

requi re(mnsg. val ue >= get EntranceFee(), "Not enough ETH ");
pl ayer s. push(nsg. sender);

The above function is related to the entrance to the lottery. At first, the state of the lottery is open and we check if the
players pay the minimum entrance fee to participate in it.

function get EntranceFee() public view returns (uint256) {

(, Int256 price, , ,) = ethUsdPriceFeed. | atest RoundDat a();
ui nt 256 adj ustedPrice = uint256(price) * 10**10;

/1 18 decinmals

/1 $50, $2,000 / ETH

/1 50/ 2,000

/1 50 * 100000 / 2000

ui nt 256 cost ToEnter = (usdEntryFee * 10**18) / adj ustedPri ce;
return cost ToEnter;

}

The above function is responsible for checking the price of the Ethereum in USD and determining the price of

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

participation in ETH.

function startLottery() public onlyOmer {
require(lottery state == LOTTERY_STATE. CLOSED,
"Can't start a new lottery yet!");
|ottery_state = LOTTERY_STATE. OPEN;

}

The above function starts the lottery and before that checks if the lottery has not yet got closed.

function endLottery() public onlyOmer {

lottery state = LOTTERY_STATE. CALCULATI NG_W NNER;
byt es32 requestld = requestRandommess(keyhash, fee);
em t Request edRandommess(request|d);

}

The above function gives the autharity to only the owner of the cantract. This function also determines the winner to
end the lottery. This process is done by requesting a random number.

function ful fill Randommess(bytes32 _requestld, uint256 _randonmess)
I nternal override{

require(lottery state == LOTTERY_STATE. CALCULATI NG_W NNER
"You aren't there yet!");

requi re(_randomess >0, "random not-found");

ui nt 256 i ndexOf Wnner = _randomess % pl ayers. | engt h;
recent Wnner = pl ayerdindexCf W nner];

recent Wnner . transfer (address(this). bal ance);

/'l Reset

pl ayers = new address payable[](0);

|ottery state = LOTTERY_STATE. CLOSED;

randommess = _randommess;

}

The above function requires the lottery state to be in the calculating winner. It also checks whether the given random
number is positive. Then it uses the remainder operator to calculate the id of the winner from the random number it
gets. After that, it transfers the balance of the contract to the player that has won the lottery And finally changes the
state of the lottery to closed.

Configuration

Notice that up to here you need to enter the following into the Brownie-config.yaml:

dependenci es:

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= 4 N

smart contract ki t/ chai nl i nk- browni e-contracts@. 1.1

OpenZeppel i n/ openzeppel i n-contracts@. 4. 0
conpil er:

sol c:

remappi ngs:
"@hainlink=smartcontractkit/chainlink-brownie-contracts@l. 1.1’
" @penzeppel i n=CpenZeppel i n/ openzeppel i n-contracts@. 4. 0
dotenv: .env
net wor ks:

defaul t: devel opnent

devel opnent :

keyhash: ' O0x2edOf eb3e7f @022120aa84f ab1945545a9f 2f f c9076f d6156
fa96eaf f 4c1311"

f ee: 100000000000000000

ri nkeby:

vrf _coordi nat or:' Oxb3dCch4Cf 7a26f 6¢cf 6B120Cf 5&K3875B7BBc655B'
eth_usd_price_feed:' O0x8&53747A1Fa494EC906cEQOE9f 37563A8AF630e
l'i nk_t oken: ' 0x01BE3585060835E02B77ef 475b0Cc51aA1e0709
keyhash: ' 0x2edOf eb3e7f @022120aa84f ab1945545a9f 2f f c9076f d6156
fa96eaf f4c1311'

f ee: 100000000000000000

verify: True

mai nnet - f or k:
eth_usd_price_feed:' Ox5f4eC3Df 9cbd3714FE2740f 5E3616155¢c5b8419
verify: Fal se
wal | et s:

from key: ${PRI VATE _KEY}

Up to here, we only need the following to be able to compile the Brownie project:

dependenci es:
smart contract ki t/ chai nli nk-browni e-contractsal. 1.1
OpenZeppel i n/ openzeppel i n-contract s@. 4. 0
conpiler:
sol c:
r emappi ngs:
@hai nl i nk=snmart contract ki t/ chai nli nk-browni e-contracts@. 1.1’
@penzeppel i n=CpenZeppel i n/ openzeppel i n-contracts@. 4.0

In the next parts, we are going to see how we can deploy and test this smart contract on different networks.
Deployment of the L ottery Project Using Brownie

In this section, we are going to continue the lottery project and focus on its deployment of it. The main python file as
always is the deploy.py where we are going to deploy the four stages of a lottery: deploy the lottery, start the lottery,
enter the lottery and end the lottery. The prize here is paid with a Chainlink token. As a result, we will add the

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= WA

ChainlinkTokenlInterface contract to the contracts directory.
Managing the Folders of the Lottery Project Directory

In order to deploy the smart contract that we have just written, we need to complete the deployment and test folders
and also add some other files like the dependencies of cur smart contract. As always, the first step is to tyoe in the
terminal: browni e init Then,you will see the folders and files that are created afterward. Then it is
time to write our deploy.py file. As you know every lottery contract has 4 stages, deploying the lottery, starting it,
entering the lottery, and ending it. So accordingly, we have 4 functions:

from

scripts. hel pful _scripts inport get_account, get _contract, fund with_|ink
frombrownie inport Lottery, network, config
I mport tine

def deploy_lottery():

account = get_account ()

|ottery = Lottery. depl oy(get _contract ("eth_usd _price_feed"). address,
get _contract(vrf_coordi nator"). address,

get _contract(link_token").address,

config[' networks"] [network. show active()]["fee"],

config[' networ ks"] [networ k. show active()]["keyhash"],

{from: account},

publ i sh_source=confi g["networ ks"] [networ k. show_active()].get("verify"
, False),)

print("Deployed lottery!")

return lottery

In every contract deployment, we should determine some of the specifications related to a contract such as contract
addresses (address of the dependency contracts) and some config specifications about every network.

def start lottery():

account = get_account ()

lottery = Lottery[-1]

starting _tx = lottery.startLottery({"front: account})
starting tx.wait(1)

print("The lottery is started!")

The above function starts the lottery. At first, it gets the account address which uses the get account function from
helpful_scripts.py, then it gets the latest lottery smart contract, After that, it starts the lottery transaction using the
startLottery function inside the contract.

def enter_lottery():

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= WA

account = get _account ()

lottery = Lottery[-1]

value = lottery. get EntranceFee() + 100000000

tx = lottery.enter({"from': account, "val ue": val ue})
tx wait(1l)

print("You entered the lottery!")

The above function also gets the account and the latest lottery contract records, then determine the value of the
entrance fee (natice that 10000000 that has been added up with the entrance fee, is not a big number as it is in the
Wei unit). Then, we enter the participant by using the enter function from the lottery.sol contract.

def end lottery():

account = get_account ()

lottery = Lottery -1]

fund the contract

#then end the lottery

tx = fundwith_ |link(lottery.address)

tx.wait(l)

endi ng_transaction = |lottery.endLottery({"front: account})
endi ng_transaction. wait (1)

time. sl eep(180)

print(f"{lottery.recentWnner()} is the new wi nner!")

In the abave function, again get the account and the lottery contract, fund the winner with some link token (using the
function written in helpful_scripts.py), and ends the transaction using the function in the lottery contract.sol.

def main():

depl oy lottery(
start _lottery()
enter _lottery()
end_lottery()

)

In the abave main function, we apply other functions in the sequence of a lottery.
Helpful _Scripts.py
Now, it is time ta go after helpful_scripts.py file and explain the codes:
from browni e i nport
(accounts, network, config, MyckV3Aggregator, VRFCoordi natorMck, LinkToken,
Contract, interface,)
FORKED LOCAL_ENVI RONMVENTS = ["mai nnet-fork", "mainnet-fork-dev"]
LOCAL_BLOCKCHAI N_ENVI RONMENTS = ["devel opnment”, "ganache-I| ocal "]

def get account (i ndex=None, i d=None):

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= 4 N

I f 1 ndex:
return account s[i ndex]
if oid:

return accounts. | oad(id)
i f (network.show active() in LOCAL_BLOCKCHAI N_ENVI RONVENTS or
net wor k. show_active() in
FORKED_LOCAL_ENVI RONVENTS) :
return accounts| 0]
return accounts.add(config["wallets"]["fromkey"])

The above function determines the address of the available account according to the active network.

contract _to nock = {"eth _usd price_feed": M-ckV3Aggregat or
"vrf _coordinator": VRFCoordi nat or Mock,
"l'i nk_token": LinkToken,}
def get _contract(contract_nane):

contract_type = contract_to_nocl contract_nane]
I f network.show active() in LOCAL_BLOCKCHAI N_ENVI RONVENTS:
if len(contract_type) <= O:

#vbckV3Aggr egator. | ength

depl oynocks()

contract = contract _type 1]

MockV3Aggr egat ofr- 1]
el se:

contract _address = confi §"networks"][network.show active()]]
contract _nane]

contract =Contract.from abi (contract_type. nane, contract_address,
contract _type. abi)

return contract

The above function will grab the contract addresses from the Brownie config when defined. Otherwise, it will deploy a
mock version of that contract, and return that mock contract.

DECI MALS = 8

I NI TI AL_VALUE = 200000000000

def depl oy_nocks(deci mal s=DECI MALS, initial _val ue=I Nl TI AL_VALUE)
account = get_account ()

MockV3Aggr egat or . depl oy(decimal s, initial _value, {"from': account})
I i nk_token = LinkToken. depl oy({"from': account})

VRFCoor di nat or Mock. depl oy(l i nk_t oken. address, {"fronf: account})
print (" Depl oyed! ")

The above function deploys the mock version of the 2 contracts: 1. VRFCoordinator and 2. V3Aggregator contracts.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
F— < A

def fund with |ink(contract address, account=None, |ink token=None,
anmount =100000000000000000): # 0.1 LINK
account = account if account el se get_account ()

l[ink token = link _tokenif |ink token else get _contract("link_token")
tx = link_token.transfer(contract_address, amount, {"fronf: account})
tx. wait (1)

print("Fund contract!")

return tx

The above function funds the winner with a link token. Notice that we should create a file in the interfaces folder for

the link token contract and name it LinkTokenlInterface.sol. You can copy and paste the contract below:
Link Token Interface Contract

The below contract which is called LinkTakenlInterface.sol, should be added to the contacts folder. We use the functions
of this contract in the helpful_scripts.py and deplay.py to fund the winner of the lottery with some ChainLink tokens. If
you look at the contract in detail, you will see that the functions and methods are the same as of an ERC-20 token
contract.

pragma solidity ~ 0.6.6;

I nterface LinkTokenlnterface {
function all owance(address owner, address spender) external view
returns (uint256 remaining);
functi on approve(address spender, uint256 value) external returns (
bool success);
functi on bal anceF (address owner) external view returns

(ui nt 256 bal ance);
function decimal s() external viewreturns (uint8 decinmal Pl aces);
functi on decreaseApproval (address spender, uint256 addedVal ue)
external returns (bool success);
function increaseApproval (address spender, uint256 subtractedVal ue)
ext ernal ;
function nanme() external view returns (string nenory tokenNamne);
function synbol () external view returns (string nenory tokenSynbol);
function total Supply() external view returns

(ui nt 256 total Tokensl ssued);
function transfer(address to, uint256 value) external returns (bool
success);
function transferAndCal | (

addresst o,

ui nt 256val ue,

bytes cal | data data

) external returns (bool success);
function transferFron

addressfrom

addresst o,

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

ui nt 256val ue
) external returns (bool success);

Compiling Our Complete Lottery Project Using Brownie for Final Deployment

In this section, following the lottery project, we are going to complete the scripts that should be written so that we can
finally compile our complete contract and be able to deploy it fully. The focus of this section is on the testing of the
contract, where we are going to test the different functionalities of different stages of the lottery project.In the
following of the lottery project, we are going to complete the scripts that should be written so that we can finally
compile our complete contract and be able to deploy it fully.

Brownie_config.sol

There are some .sol dependencies that need to be copied and pasted into the contracts/test folder so that we can use
them to deploy our main lottery smart contract. So make sure you copy them from this link and paste them into your
directory.

.env File

Also, in the .env file enter the private key of your test Metamask account (Do not use a Metamask wallet with real
crypto in it), your Etherscan Token, and Infura ID.

export WEB3_| NFURA PROIECT | D=""
export PRI VATE _KEY=""
export ETHERSCAN TOKEN="'

Testing the Contract Functionalities

Now, every standard smart contract deployment needs testing and this one is not an exception, we start our test with
test_lottery_unit.py:

fromscripts. hel pful _scripts inport
(LOCAL_BLOCKCHAI N_ENVI RONVENTS, get _account, fund_w t h_I i nk,
get _contract,)
frombrownie inport Lottery, accounts, config, network, exceptions
fromscripts.deploy_lottery inport deploy_lottery
fromweb3 i nport Web3

| nport pytest

def test get _entrance fee():
I f network.show active() not in LOCAL_BLOCKCHAI N_ENVI RONVENTS:

pyt est . ski p()
Arrange

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://github.com/PatrickAlphaC/smartcontract-lottery/tree/main/contracts/test
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
! N

|ottery = deploy lottery()

Act

2,000 eth / usd

usdEntryFee is 50

2000/1 == 50/ x == 0.025

expected_entrance_fee = Web3.toWi (0. 025, "ether")

entrance _fee = lottery. get EntranceFee()
Assert
assert expected entrance_fee == entrance_fee

The above test considers the price of ETH is 2000 dollars and the entrance fee is 50 dollars so the 0.025 ether is
required to participate in the lottery. as a result, we expect the entrance fee to be 0.025 ether, so we call the getEn-
tranceFee() function to check the validity of the result.

def test_cant_enter_unless_started():

Arrange

i f network.show active() not in LOCAL_BLOCKCHAI N ENVI RONVENTS:

pyt est ski p()

|ottery =deploy lottery()

Act / Assert

wi th pytest.rai ses(exceptions. Virtual Machi neError):
lotteryenter({"fronf: get_account(), "value": lot-tery.getEntranceFee

0O1)

The above test checks whether the participant can enter or not at the times the lottery has been closed or has not
opened yet.

def test _can_start_and enter lottery():

Arrange

i f network.show active() not in LOCAL_ BLOCKCHAI N ENVI RONMENTS:
pyt est . ski)

|ottery = deploy lottery()

account = get_account ()

|ottery.startLottery({"from': account})

Act

lottery.enter({"fronf: account, "value": lottery.getEntranceFee()})
Assert

assert lottery. players(0) == account

The above test checks whether the player who has participated in the lottery is recorded in the list of lottery players in
other words it checks if the player has entered or not.

def test_can_end_ lottery():

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
F— < A

Arrange
i f network.show active() not in LOCAL_ BLOCKCHAI N ENVI RONMENTS:
pyt est . ski)
|ottery = deploy lottery()
account = get_account ()
|ottery.startLottery({"from': account})
lottery.enter({"fronmf': account, "value": l|lottery.getEntranceFee()})
fund wth_link(lottery)
| ottery.endLottery({"from: account})
assert lottery.lottery state() ==

The above test checks whether the end lottery function works. To do so, it first passes all the other tests and applies
the other stages of the lottery and at the end tests the lottery state.

def test_can_pick_w nner_correctly():

Arrange

I f network.show active() not in LOCAL_BLOCKCHAI N_ENVI RONMVENTS:

pyt est . ski p()

lottery = deploy lottery()

account = get _account ()

|ottery.startLottery({"from': account})

|ottery.enter({"fronf': account, "value": l|lottery.getEntranceFee()})

lottery.enter({"fronf: get_account (i ndex=1), "val ue"
|ot-tery. get EntranceFee()})

lottery.enter({"from: get_account (i ndex=2), "val ue"

. lot-tery.getEntranceFee()})

fund with link(lottery)

starting_bal ance_of account = account. bal ance()

bal ance _of |ottery = | ottery. bal ance()

transaction = lottery.endLottery({"fronm': account})

request _id = transaction. event s|["Request edRandomess"]["request|d"]

STATI C RNG = 777

get _contract ("vrf_coordi nator"

) . cal | BackW t hRandommess(request _id, STATIC RNG |ottery. address,

{from': account})

777 %3 =0

assert lottery.recent Wnner() == account
assert lottery. balance() == 0
assert
account . bal ance() == starting_bal ance_of account + bal-ance_of lottery

The above test uses all of the operations of the lottery that have been tested to test the correctness of the winner
picking. To do so, it first enters an account into the lottery and at the end, tests whether the winner is in the same
account, whether the lottery contract balance has turned 0 as a result of sending money to the winner, and whether
the winner's account has been added up with the balance of the lottery contract.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= WA

from browni e i nport network

I mport pytest

fromscripts. hel pful _scripts inport (LOCAL_BLOCKCHAI N_ENVI RONMENTS,
get _account, fund with_link,)

fromscripts.deploy lottery inport deploy lottery

I mport tine

def test _can_pick w nner():
i f network.show active() in LOCAL_ BLOCKCHAI N ENVI RONMENTS:
pyt est . ski)
|ottery = deploy lottery()
account = get_account ()
|ottery.startLottery({"from': account})
lottery.enter({"fronmf: account, "value": l|lottery.getEntranceFee()})
lottery.enter({"fronf: account, "value": lottery.getEntranceFee()})
fundwith Iink(lottery)
|ottery.endLottery({"from': account})
time. sl eep(180)
assert lottery.recent Wnner() == account
assert lottery. balance() == 0

The above test also does the same process in a little bit different manner.

It is important to know that we should do all of the tests one by one to be able to debug the functions. As you can see,
we started our first test with the first stage of the contract.

Final Word on Lottery Project Deployment Using Brownie

Firstly, we have managed to get started with the lottery project and have written the smart contract for it. In addition
to that, we have added some dependency contracts like VRFConsumerBase, Openzeppelin, and V3Aggregatarinterface.

Secondly, we have managed to write the deploy.py and helpful_scripts.py to interact with the lottery smart contract
and deploy the different stages of a lottery such as deploying the lottery, starting it, entering it using different
accounts, and ending it. In the end, the winner is going to be awarded some Chainlink tokens.

Thirdly, we have managed to complete the whole lottery project script file so that we can finally compile and deploy the

smart contract. In most of the parts of this tutarial, we focused on testing the contract scripts for testing the different
functionalities related to the different stages of the contract.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

Join Arashtad Community

Follow Arashtad on Social M edia

We provide variety of content, products, services, tools, tutarials, etc. Each sacial profile according to its features and
purpose can caver only one or few parts of our updates. We can not upload our videos on SoundCloud or provide our
eBooks on Youtube. So, for not missing any high quality original content that we provide on various social networks,

make sure you follow us on as many social networks as you're active in. You can find out Arashtad's profiles an
different social media services.

ONORORONORONORONORORORORONORD)
@ @ (%)) (W
© @ s ® e

®©

OC)
OJ6)
OJC)
IORO)
©®
©@©
@
OJO,
OJO,

OO
®®

e @®®

Get Even Closer!

Did you know that only one universal Arashtad account makes you able to log into all Arashtad netwaork at once?
Creating an Arashtad account is free. Why not to try it? Also, we have reqular updates on our newsletter and feed
entries. Use all these benefitial free features to get more involved with the community and enjoy the many products,
services, toals, tutorials, etc. that we provide frequently.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://github.com/arashtad
https://codepen.io/arashtad
https://jsfiddle.net/user/arashtadcompany/
https://profiles.wordpress.org/arashtad#content-plugins
https://extensions.joomla.org/profile/profile/details/384465#extensions
https://dribbble.com/Arashtad
https://www.behance.net/arashtad
https://www.deviantart.com/arashtad
https://www.flickr.com/photos/arashtad/
https://soundcloud.com/arashtad
https://myspace.com/arashtad
https://www.youtube.com/@arashtad-tutorials
https://vimeo.com/arashtad
https://www.patreon.com/arashtad
https://ashtad.tumblr.com
https://medium.com/@arashtad
https://arashtadstudio.blogspot.com/
https://www.instapaper.com/p/arashtad
https://www.bloglovin.com/@arashtad
https://www.amazon.com/gp/profile/amzn1.account.AH6JBYDDODDTBOOSQO5EG7RQV2UA?preview=true
https://www.slideshare.net/Arashtad
https://goodreads.com/arashtad
https://www.linkedin.com/company/arashtad
https://twitter.com/arashtad
https://vk.com/arashtad
https://www.reddit.com/user/ArashtadStudio
https://www.linkedin.com/company/arashtad
https://twitter.com/arashtad
https://vk.com/arashtad
https://www.reddit.com/user/ArashtadStudio
https://www.quora.com/profile/Arashtad
https://digg.com/@arashtad-company
https://t.me/arashtadstudio/
https://discord.gg/WfB2QTzF4A
https://clickbank.com/
https://warriorplus.com/member/Arashtad
https://graphicriver.net/user/arashtadstudio
https://codecanyon.net/user/arashtadstudio
https://www.ravelry.com/people/Arashtad
https://www.scribd.com/user/567045007/Arashtad
https://www.diigo.com/profile/arashtad
https://triller.co/@arashtad
https://www.torial.com/en/arashtad.co
https://mewe.com/i/arashtadcompany
https://wt.social/u/arashtad-company
https://spreely.com/profile/288050
https://www.taringa.net/Arashtad
https://www.ok.ru/arashtad
https://i.arashtad.com/
https://blog.arashtad.com/newsletter/
https://arashtad.com/feed/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

