‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

How to Set Up the Dependencies For Running Local Terra: All You Need to

Know
No comments

ARASHTAD i g

- SRR HOW TO SET UP THE DEPENDENCIES

- 3 FOR RUNNING LOCAL TERRA

" . b -
= - } - ~
- R -
" 5
- \‘F - 5
5 / B
ALL YOU NEED TO KNOW e

:\F\’/\SHT/\D.CEIM . . # m

In thistutorial-based article, we are going to set up the dependencies for running Local
Terra. So, you will be guided through all the installations and commands necessary to
start your interaction with local Terra smart contracts. I nstalling Go, Docker, Terrad,

and git cloning local Terra, aswell asterra-core repositories, are some of the main
steps we are going to take in this tutorial.

Installing the Dependencies

For running local terra the main step is to install all of the dependencies required. The first step is to install go. You
need to be careful that the version should be higher than 1.17.5.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://blog.arashtad.com/blockchain/terra/set-up-dependencies-run-local-terra/
https://blog.arashtad.com/blockchain/terra/write-terra-smart-contracts/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

A) DESIGN AND DEVELOPEMENT SOLUTIONS

The Dependenciesfor Running Local Terra#l: Go

To install Go, you should find the latest version for your operating system using this link. Then, the next step is to
check the version to make sure it meets the requirement of our version (higher than 1.17.5). To do so, enter the
following command in the terminal:

go version
Result:

go version gol.18.1 |inux/and64
IF you see a result like the above, your installation has been successful. You should also have the Rust programming
language installed using the below command (Notice that this command is used for Linux 0S) in the terminal:

curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh
For ather operating systems, follow the instructions on this link. Now, it is time to git clone the terra-core repositary. In
the terminal, enter the following command:

git clone https://github.comterra-noney/core terra-core
After that, change the directory to the terra-care folder by entering the below command in the terminal:

cd terra-core
To install the downloaded repository, enter the following in the terminal:

git checkout nmain make install
And, the most important step is to git clane the local Terra repository. We follow the same steps for this one as well:

git clone --depth 1 https://ww. github.com terra-noney/Local Terra cd
Local Terra

The Dependenciesfor Running Local Terra#2: Docker

One of the required dependencies for running local Terra is Docker. You should also have docker installed on your
operating system. Here we explain the process for Linux:
For the installation quide in other operating systems than Linux, follow the instructions on the

* * * * *

PAPER . All Rights Reserved.

https://go.dev/doc/install
https://www.rustlang.org/tools/install
https://docs.docker.com/engine/install/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
F— < A

Installation Guide on Linux
This process consists of 5 steps that are described in the followings.

1. Dependencies:

At first, update the system to get the list of available packages and their version numbers. To do so, enter the
following command in the terminal:

sudo apt update
To prepare for the installation run these commands in the terminal one after the other:

sudo apt -y install apt-transport-https ca-certificates curl software-
properties-comon

sudo apt -y renove docker docker-engi ne docker.io containerd runc

2. Add Docker’s Official GPG Key:

Also run the following commands in the terminal:

curl -fsSL https://downl oad. docker.com | i nux/ ubunt u/ gpg |
sudo gpg --dearnor -o /usr/share/keyrings/docker-archive-keyring.gpg
3. Add the Docker Repository to Linux:

To add the Docker repositary for Linux, enter the following commands in the terminal:

echo "deb [arch=$(dpkg --print-architecture) signed-

by=/ usr/ shar e/ keyri ngs/ docker ar chi ve- keyri ng. gpgd]

htt ps://downl oad. docker. coni | i nux/ ubuntu bi onic stable" |
sudo tee /etc/apt/sources.list.d/ docker.list > /dev/nul

deb [arch=and64 si gned-by=/usr/share/keyrings/docker-archive-

keyring. gpg] https://downl oad. docker.con | i nux/ubuntu bionic stable
4. Install the Docker Engine and the Docker Compose:

And finally, It is time to install docker by running these 2 commands in the terminal one after the other.

sudo apt update
sudo apt install docker-ce docker-ce-cli containerd.io
5. Checking the I nstallation:

To start with checking the installation, use the command below:

sudo user nod -aG docker
USER newgr p docker

To make sure the installation has been successful, run the following command in the terminal:

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

docker version
Result:

Client: Docker Engine - Community Version: 20.10.14 APl version: 1.41
Go version: gol.16.15 Gt commt: a224086 Built: Thu Mar 24 01:47:57
2022 OS/ Arch: |inux/anmd64 Context: default Experinmental: true Server:
Engi ne: Version: 20.10.14 APl version: 1.41 (mninmmversion 1.12) o
version: gol.16.15 Gt commt: 87a90dc Built: Thu Mar 24 17:15:03 2022
OS/ Arch: |inux/and64 Experinental: false containerd: Version: v1.5.11
G tComm t: 3df 54a852345ae127d1f a3092b95168e4a88e2f8 runc: Version:
1.0.3 GtCommt: docker-init: Version: 0.19.0 GtCommt: de40Oad

After installation for every use, you need to first sign in and run the following commands in the terminal:

sudo usernod -aG docker docker | ogin docker-conpose up
Run the above commands in the local Terra directory terminal.
Result:

terrad_1 | 1:47PM I NF indexed bl ock hei ght =143 nodul e=t xi ndex terrad_1
| 1:47PM I NF Ti med out dur=4987.108435 hei ght =144 nodul e=consensus
round=0 step=1 terrad 1 | 1:47PMINF received proposal

nodul e=consensus

proposal ={" Type": 32, "bl ock_id": {"hash": " FADD36C3FB8D539F3F28ABB8BB7969A099AEE
{"hash": " F92FDEA4153F172B082676706A3B35F54A0EF3D6639FA23A3FD88FFBB40ACAGE" , "t
1,"round": 0, "signature":"nDA4Yt VFM a8TXCLMATwWydkf JSwQol 57zNkkKi eyvOxy/
zbnCVI MLOcpzh78+0wynilj T3f] 16ZqgH5G FE3kaAg==", "ti nmest anp": " 2022- 05-
07T13:47: 21. 8465431947"} terrad_1 | 1:47PM I NF received conplete
proposal bl ock
hash=F4DD36C38FB8D539F3F28ABB8BB7969A099AEE78B707FAE7F3C7DC8D36BF38B9D
hei ght =144 nodul e=consensus terrad 1 | 1:47PMINF finalizing commt of
bl ock

hash=F4DD36C8FB8D539F3F28 ABB8BB7969A099AEE78B707FAE7F3C7DC8D36BF38B9D
hei ght =144 nodul e=consensus num t xs=0

r oot =EFAA4A74DD1E73032E0FF553A37 CCDFAD443AFOEE395516EB247948ADAF45A21
terrad_1 | 1:47PMINF minted coins from nodul e account

anount =226570495ul una fromem nt nodul e=x/bank terrad_1 | 1:47PM I NF
execut ed bl ock hei ght =144 nodul e=state num. nvalid_ txs=0

numvalid txs=0 terrad_1 | 1:47PMINF conmt synced

commi t =436F6D6D697449447B5B313138203835203538203234362036322032392
03133203136302033372031393920343920393520373020323030203231312032323
12032353320323039203231382031393720313538203134392032313720322039203
13238203232352031362031363420313339203131392032325D3A39307D terrad_1 |
1: 47PM I NF comm tted state app_hash=76553AF63E1DO-
DA025C7315F46C8D3DDFDD1DACS9E95D9020980E110A48B7716 hei ght =144

nodul e=state numtxs=0 terrad_1 | 1:47PM I NF indexed bl ock hei ght =144
nodul e=t xi ndex Now, you should install cargo: To install cargo, run
these 3 commands in the term nal separately: cargo install cargo-
generate --features vendored-openssl cargo install cargo-run-scrip

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

For the following command in the terminal, instead of YourProjectName, you can enter any name you want for your
project to be created (make sure you run this command in the directory of local Terra you have just git cloned):

cargo generate --git https://github. comi CosmMasni cwtenplate.git --
name Your Proj ect Nane

Result:

Generating tenplate ... [1/36] Done: .cargo/config [2/36] Done:
.cargo [3/36] Skipped: .circleci/config.ym [4/36] Done: .circleci [
1/36] Done: .cargo/config [2/36] Done: .cargo [3/36] Skipped:
.circleci/config.ym [4/36] Done: .circleci [5/36] Done:
.editorconfig [6/36] Done: .github/workflows/Basic.ym [7/36] Done:
.gi thub/ workflows [8/ 36] Done: .github [9/36] Done: .gitignore

[10/ 36] Done: .gitpod. Dockerfile [11/36] Done: .gitpod.ym [1/36]
Done: .cargo/config [2/36] Done: .cargo [3/36] Skipped:
.circleci/config.ym [4/36] Done: .circleci [5/36] Done:
.editorconfig [6/36] Done: .github/workflows/Basic.ym [7/36] Done:
.gi thub/ workflows [8/ 36] Done: .github [9/36] Done: .gitignore

[10/ 36] Done: .gitpod. Dockerfile [11/36] Done: .gitpod.ym [12/36]
Done: Cargo.lock [13/36] Done: Cargo.tom [14/36] Done: Devel opi ng. nd
[15/36] Done: Inporting.nd [16/36] Done: LICENSE [17/36] Done: NOTI CE
[1/36] Done: .cargo/config [2/36] Done: .cargo [3/36] Skipped:
.circleci/config.ym [4/36] Done: .circleci [5/36] Done:
.editorconfig [6/36] Done: .github/workflows/Basic.ym [7/36] Done:
.gi thub/ workflows [8/ 36] Done: .github [9/36] Done: .gitignore

[10/ 36] Done: .gitpod. Dockerfile [11/36] Done: .gitpod.ym [12/36]
Done: Cargo.lock [13/36] Done: Cargo.tom [14/36] Done: Devel opi ng. nd
[15/36] Done: Inporting.nd [16/36] Done: LICENSE [17/36] Done: NOTI CE
[18/ 36] Done: Publishing.nd [19/36] Done: READVE. nd [20/36] Done:
exanpl es/ schema.rs [21/ 36] Done: exanples [22/36] Done: rustfmt.tom

[23/ 36] Done: schema/ count response.json [24/36] Done:

schema/ execute_nsg.json [1/36] Done: .cargo/config [2/36] Done:
.cargo [3/36] Skipped: .circleci/config.ym [4/36] Done: .circleci [
5/ 36] Done: .editorconfig [6/36] Done: .github/workflows/Basic.ym |
7/ 36] Done: .github/workflows [8/ 36] Done: .github [9/36] Done:
.gitignore [10/36] Done: .gitpod. Dockerfile [11/36] Done: .gitpod.ym
[12/ 36] Done: Cargo.lock [13/36] Done: Cargo.tom [14/36] Done:
Devel opi ng. nd [15/ 36] Done: Inporting.nd [16/36] Done: LICENSE [17/36]
Done: NOTI CE [18/ 36] Done: Publishing.nd [19/36] Done: README. nd

[20/ 36] Done: exanpl es/schema.rs [21/36] Done: exanples [22/36] Done:
rustfm.tom [23/36] Done: schena/count_response.json [24/36] Done:
schema/ execut e_nsg.j son [25/36] Done: schenma/instantiate_nsg.json

[26/ 36] Done: schema/ query_nsg.json [27/36] Done: schena/state.json

[28/ 36] Done: schenma [29/36] Done: src/contract.rs [30/36] Done:
src/error.rs [31/36] Done: src/helpers.rs [32/36] Done:
src/integration_tests.rs [33/36] Done: src/lib.rs [34/36] Done:
src/nmeg.rs [35/36] Done: src/state.rs [36/36] Done: src Myving
generated files into: " /honme/ nohanmad/ Local Terral/ ny-project/np ..
Initializing a fresh Gt repository Done! New project created

/ home/ nohamad/ Local Terra/ my- proj ect/ np

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

CosmWasm Smart Contractson Local Terra

In this section, we are going to get familiar with CosmWasm smart contracts written inRust programming language for

interacting with local Terra through Python or JavaScript. These smart contracts have different functions that we need

to send specific JSON messages to interact with them. In the end, we are going to create the artifacts folder containing
the necessary binary files to interact with local Terra.

IF you open the YourProjectName folder and in its src folder, the Msg.rs and contract.rs alangside with other Rust script
files are Found. The Msg.rs contract is related to the 3 kinds of messages we can send to our contract and it is
composed of 3 main parts:

1. InstantiateMsg struct:

This message sets the state in the smart contract meaning an initial state must be given to the smart contract when it
is launched.
2. ExecuteMsg enum:

This is a message that executes an action to the change of state, such as posting a message to the blockchain.
3. QueryMsg Query Msg:

This message is for querying data from the chain.

use schemars::JsonSchens;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Cone, Debug, Partial Eq, JsonSchem)]
pub struct InstantiateMg {
pub count: i 32,

#[derive(Serialize, Deserialize, Cone, Debug, Partial Eq, JsonSchem)]
#[serde(renane_all = "snake _case")]
pub enum Execut eMsg {

I ncrement {},

Reset { count: 32},

#[derive(Serialize, Deserialize, Cone, Debug, Partial Eq, JsonSchem)]
#[serde(renane_all = "snake_case")]
pub enum QueryMsg {
/'l GetCount returns the current count as a json-encoded nunber
CGet Count {},

/1 We define a custom struct for each query response
#[derive(Serialize, Deserialize, Cone, Debug, Partial Eq, JsonSchem)]

pub struct Count Response {
pub count: i 32,
}

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://blog.arashtad.com/blockchain/terra/learning-rust-cosmwasm-smart-contracts/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
F— < A

On Dependenciesfor Running Local Terra: What isInside the Contract.rsFile?

Anather important Rust file is Contract.rs. In the next part, we are going to refer to the functions of this contract and
use them in python. The important functions that we are going to interact with later using the python scripts are
instantiated, execute, try increment, try_reset, and query_count. We will later see how we can interact with these

functions with the JSON messages sent to them through python cades. As you can see the programming language that
these smart contracts are written in is Rust.

use cosmvasm std::entry_ point;
use cosmmasm std::{to_binary, Binary, Deps, DepsMut, Env, Messagel nfo, Respor
use cw2::set_contract_version;
use crate::error::ContractError;
use crate::nsg::{Count Response, ExecuteMsg, InstantiateMsg, QueryMsg};
use crate::state::{State, STATE};
/1 version info for mgration info
const CONTRACT_NAME: &str = "crates.io:ny-project"”;
const CONTRACT_VERSI ON: &str = env! (" CARGO _PKG VERSI ON');
#[cfg attr(not(feature = "library"), entry_point)]
pub fn instantiate(
deps: DepsMut,
_env: Env,
i nfo: Messagel nf o,
nmsg: InstantiateMsg,
) -> Result {
l et state = State {
count: msg. count,
owner: info.sender.clone(),

s

set _contract_version(deps. storage

, CONTRACT_NAME, CONTRACT_VERSI ON) ?;
STATE. save(deps. storage, &state)?;
Ok(Response: : new()

.add_attribute("nmethod", "instantiate")
.add_attribute("owner", info.sender)
.add_attribute("count", nsg.count.to_string()))
}
#[cfg_ attr(not(feature = "library"), entry_point)]

pub fn execute(
deps: DepsMit,
_env: Env,
i nfo: Messagel nf o,
meg: Execut eMsg,
) -> Result {

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS
= 4 N

mat ch nsg {
Execut eMsg: : I ncrement {} => try_increnent(deps),
Execut eMsg: : Reset { count } => try reset(deps, info, count),

}
}

pub fn try_increnent(deps: DepsMut) -> Result {
STATE. updat e(deps. storage, |nmut state| -> Result<_, ContractError

> {
state.count += 1,
Kk(state)})?;
Ok (Response::new).add _attribute("nethod", "try_ increnent"))
}
}

pub fn try reset(deps: DepsMut, info: Messagelnfo, count: i32) ->
Resul t
STATE. updat e(deps. storage, |mut state| -> Result< , ContractError

> {
i f info.sender != state.owner {
return Err(ContractError::Unauthorized {});
}
state.count = count;
k(state)
e .
Ok (Response::new).add _attribute("nethod", "reset"))
}
#[cfg attr(not(feature = "library"), entry_point)]

pub fn query(deps: Deps, _env: Env, nsg: QueryMsg) -> StdResult {
mat ch nsg {
Quer yMsg: : Get Count {} => to_binary(&query_count (deps)?),

}

fn query_count (deps: Deps) -> StdResult {
| et state = STATE. | oad(deps. storage) ?;
Ok (Count Response { count: state.count })

}

#[cfg(test)]
nod tests {
use super::?*,
use cosmmvasm std: :testing::{nock _dependenci es, nock _env, nock_info};
use cosmmvasm std::{coins, frombinary};
#[test]
fn proper_initialization() {
| et mut deps = nock_dependencies(&]);
l et neg = InstantiateMsg { count: 17 };
let info = nock _info("creator"”, &coins(1000, "earth"));

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD

DESIGN AND DEVELOPEMENT SOLUTIONS

/1l we can just call .unwap() to assert this was a success
let res = instantiate(deps.as_mut(), nock_env()
, info, neg).unwap();

assert_eq! (0, res.nessages.len());

/1
| et

it worked, let's query the state
res = query(deps.as_ref(), nock_env()

, QueryMsg::GetCount {}).unwap();

| et

val ue: Count Response = from bi nary(& es).unwap();

assert _eq! (17, val ue.count);

}
#[test]

fnincrenment() {

| et
| et
| et
| et
, info, neg).
/1]
| et
| et
| et
, info, nBeQ).

nmut deps = nock_dependenci es(&coi ns(2, "token"));
msg = InstantiateMsg { count: 17 };

info = nock_info("creator", &coins(2, "token"));
_res = instantiate(deps.as_nut(), nock _env()
unwr ap() ;

beneficiary can rel ease it

i nfo = nock_i nfo("anyone", &coins(2, "token"));
nsg = ExecuteMsg::Increnment {};

_res = execute(deps.as_mut(), nock_env()

unwr ap() ;

/'l should increase counter by 1

| et

res = query(deps.as_ref(), nock _env()

, QueryMsg:: Get Count {}).unwap();

| et

val ue: Count Response = from bi nary(& es).unwap();

assert _eq! (18, val ue.count);

}
#[test]
fn reset
| et
| et
| et
| et
, info, nBQ).
[/
| et
| et
| et

0 {
mut deps = nock_dependenci es(&coi ns(2, "token"));
msg = InstantiateMsg { count: 17 };
info = nock_info("creator", &coins(2, "token"));
_res = instantiate(deps.as_nmut(), nock _env()
unwr ap() ;

beneficiary can rel ease it

unaut h_info = nock_i nfo("anyone", &coins(2, "token"));
nmsg = ExecuteMsg:: Reset { count: 5 };

res = execute(deps.as_mut(), nock_env()

, unauth_info, nsg);
mat ch res {

Err(ContractError:: Unauthorized {}) => {}
_ => panic! ("Must return unauthorized error"),

/1 only the original creator can reset the counter

| et

| et

| et
, auth_info,

auth_info = nock_info("creator", &coins(2, "token"));
nmsg = ExecuteMsg::Reset { count: 5 };

_res = execute(deps.as_mut(), nock_env()

nmsg) . unwr ap() ;

[/ should now be 5

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ \ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

l et res = query(deps.as_ref(), nock _env()

, QueryMsg:: GetCount {}).unwap();
| et val ue: Count Response = from bi nary(& es).unw ap();
assert_eq! (5, value.count);

Creating a project folder using cargo

Now, let’s run the Following command in the terminal to create binaries and other dependency files so that we can
eventually interact with local Terra using pythan Terra SDK.

cargo run-script optim ze

Result:
Runni ng script 'optimze': 'docker run --rm-v "$(pwd)":/code --nount
t ype=vol une, sour ce="$(basenane "$(pwd)")_cache",target=/code/target --

nmount
t ype=vol une, source=regi stry_cache, target=/usr/ | ocal /cargo/registry
cosmvasni rustoptim zer:0.12.5 ' Info: RUSTC WRAPPER=sccache | nfo:
sccache stats before build Conpile requests 0O Conpile requests
executed 0 Cache hits O Cache m sses 0 Cache tinmeouts 0 Cache read
errors O Forced recaches 0 Cache wite errors O Conpilation failures O
Cache errors 0 Non-cacheabl e conpil ati ons 0 Non-cacheable calls 0 Non-
conpilation calls O Unsupported conpiler calls O Average cache wite
0. 000 s Average cache read m ss 0.000 s Average cache read hit 0.000 s
Fail ed distributed conpilations 0 Cache |ocation Local disk:
"/root/.cachel/ sccache"” Cache size 0 bytes Max cache size 10 G B
Buil ding contract in /code ... Finished release [optim zed] target(s)
in 0.16s Creating internediate hash for ny_project.wasm. ..
ec1l944cdda3c5f 8f 6968d59b990d6f 92800f 65d9655a53a45ee29984f 6¢5d882
./ target/wasnB2- unknown- unknown/ r el ease/ ny_proj ect.wasm Opti m zi ng
_project.wasm ... Creating hashes ...
fa445512e5b3274ddda6474335d8515¢c660c5f cdf 03b8b2d7f 468c12f 3e55564
ny_project.wasm Info: sccache stats after build Conpile requests O
Compi | e requests executed 0 Cache hits 0 Cache m sses 0 Cache tineouts
0 Cache read errors 0O Forced recaches 0 Cache wite errors O
Conpil ation failures O Cache errors O Non-cacheabl e conpilations O
Non- cacheabl e calls O Non-conpilation calls O Unsupported conpil er
calls O Average cache wite 0.000 s Average cache read m ss 0.000 s
Average cache read hit 0.000 s Failed distributed conpilations 0 Cache
| ocation Local disk: "/root/.cachel/ sccache" Cache size 0 bytes Max
cache size 10 G B done Finished, status of exit status: O

And in the project name folder, we are going to see that a new folder has been created called artifacts. Now, we are
ready to write our python codes to interact with local Terra and use CosmWasm based contracts written in Rust.

Conclusion:

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

In this tutorial, we have managed to install the dependencies required to run local Terra, such as GO and Rust
programming languages, Docker, Cargo, and some Github repositories like terra-core and local-terra. We have also
connected to Local Terra network using the docker-compase up command. In the end, we have created our project

folder and files using the cargo generate command.
Mareover, we have taken a quick lock at some of the important smart contracts written in Rust programming language
and got Familiar with their functions so that we can interact with them later using our python scripts. We also created
the artifacts folder using the cargo command to have everything set up for interacting with the local Terra.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

‘ ARASHTAD DESIGN AND DEVELOPEMENT SOLUTIONS

Join Arashtad Community

Follow Arashtad on Social M edia

We provide variety of content, products, services, tools, tutarials, etc. Each sacial profile according to its features and
purpose can caver only one or few parts of our updates. We can not upload our videos on SoundCloud or provide our
eBooks on Youtube. So, for not missing any high quality original content that we provide on various social networks,

make sure you follow us on as many social networks as you're active in. You can find out Arashtad's profiles an
different social media services.

ONORORONORONORONORORORORONORD)
@ @ (%)) (W
© @ s ® e

®©

OC)
OJ6)
OJC)
IORO)
©®
©@©
@
OJO,
OJO,

OO
®®

e @®®

Get Even Closer!

Did you know that only one universal Arashtad account makes you able to log into all Arashtad netwaork at once?
Creating an Arashtad account is free. Why not to try it? Also, we have reqular updates on our newsletter and feed
entries. Use all these benefitial free features to get more involved with the community and enjoy the many products,
services, toals, tutorials, etc. that we provide frequently.

BLOG X PRESS X MARKET X TUTORIALS X SERVICES %X PORTOFLIO

2023 - Arashtad.com. All Rights Reserved.

https://github.com/arashtad
https://codepen.io/arashtad
https://jsfiddle.net/user/arashtadcompany/
https://profiles.wordpress.org/arashtad#content-plugins
https://extensions.joomla.org/profile/profile/details/384465#extensions
https://dribbble.com/Arashtad
https://www.behance.net/arashtad
https://www.deviantart.com/arashtad
https://www.flickr.com/photos/arashtad/
https://soundcloud.com/arashtad
https://myspace.com/arashtad
https://www.youtube.com/@arashtad-tutorials
https://vimeo.com/arashtad
https://www.patreon.com/arashtad
https://ashtad.tumblr.com
https://medium.com/@arashtad
https://arashtadstudio.blogspot.com/
https://www.instapaper.com/p/arashtad
https://www.bloglovin.com/@arashtad
https://www.amazon.com/gp/profile/amzn1.account.AH6JBYDDODDTBOOSQO5EG7RQV2UA?preview=true
https://www.slideshare.net/Arashtad
https://goodreads.com/arashtad
https://www.linkedin.com/company/arashtad
https://twitter.com/arashtad
https://vk.com/arashtad
https://www.reddit.com/user/ArashtadStudio
https://www.linkedin.com/company/arashtad
https://twitter.com/arashtad
https://vk.com/arashtad
https://www.reddit.com/user/ArashtadStudio
https://www.quora.com/profile/Arashtad
https://digg.com/@arashtad-company
https://t.me/arashtadstudio/
https://discord.gg/WfB2QTzF4A
https://clickbank.com/
https://warriorplus.com/member/Arashtad
https://graphicriver.net/user/arashtadstudio
https://codecanyon.net/user/arashtadstudio
https://www.ravelry.com/people/Arashtad
https://www.scribd.com/user/567045007/Arashtad
https://www.diigo.com/profile/arashtad
https://triller.co/@arashtad
https://www.torial.com/en/arashtad.co
https://mewe.com/i/arashtadcompany
https://wt.social/u/arashtad-company
https://spreely.com/profile/288050
https://www.taringa.net/Arashtad
https://www.ok.ru/arashtad
https://i.arashtad.com/
https://blog.arashtad.com/newsletter/
https://arashtad.com/feed/
https://arashtad.com/
https://arashtad.com/
https://blog.arashtad.com/
https://press.arashtad.com/
https://market.arashtad.com/
https://tuts.arashtad.com
https://arashtad.com/services/
https://demo.arashtad.com/
https://arashtad.com/

